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Abstract

Data �les for scienti�c and engineering codes typically consist of a series of raw data values whose description

is buried in the programs that interact with these �les. In this situation, making even minor changes in the

�le structure or sharing �les between programs (interoperability) can only be done after careful examination of

the data �les and the I/O statements of the programs interacting with this �le. In short, scienti�c data �les

lack self-description, and other self-describing data techniques are not always appropriate or useful for scienti�c

data �les. By applying an object-oriented methodology to data �les, we can add the intelligence required to

improve data interoperability and provide an elegant mechanism for supporting complex, evolving, or multidis-

ciplinary applications, while still supporting legacy codes. As a result, scientists and engineers should be able

to share datasets with far greater ease, simplifying multidisciplinary applications and greatly facilitating remote

collaboration between scientists.

�This research was supported by the National Aeronautics and Space Administration under NASA Contract No. NAS1-19480

while the authors were in residence at ICASE, NASA Langley Research Center, Hampton, VA 23681. More information on SmartFiles

can be found at http://www.icase.edu/~haines/html/smart.html.
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1 Introduction

Data �les play a fundamental role in scienti�c computing. While there are scienti�c programs that require no

input and produce little output, most large scienti�c programs interact with a number of data �les for both input

and output. Moreover, scienti�c programs are often coupled via data �les with other programs to create large

systems. These systems provide the basis for multidisciplinary applications, such as those used for aircraft design

and environmental simulation.

Data �les are in many ways ideal for coupling programs and sharing information between researchers. They

are persistent, they can be accessed from di�erent languages, and they do not create problems with overlapping

name spaces. Unfortunately, data �les usually consist only of a series of bytes, whose syntax and semantics are

implicitly de�ned by the programs that interact with them. In consequence, the \narrow" interface between

programs that �le I/O might otherwise provide is lost, leaving one with a very broad and unwieldy interface.

The basic problem with the current situation is that the structure and meaning of a data �le is implicit in

the programs interacting with it, the comments (if any) in the �le, the directory in which the �le is stored, the

name of the �le, and so on. Thus trying to use a �le produced elsewhere is roughly analogous to the problem of

interacting with external data structures without having access to the routines that create and manipulate the

data structures. Object-oriented programming languages provide a solution to the latter problem, by coupling

the data structures with the routines that manipulate them. We believe that the object-oriented methodology

extends naturally to data �les as well, yielding many of the same bene�ts to data �les as it does in the context

of programming languages.

Our approach to the software engineering issues inherent in data �les is to replace current data �les with \smart

�les," object-oriented analogs of current \dumb �les." A smart �le consists of a �le descriptor, the data itself,

and a set of associated library routines for interacting with the data at a relatively high level of abstraction. The

access routines can also provide novel �ltering capabilities, such as units conversion and consistency checks, not

available with \dumb" �les. Our goal is to apply the principles of encapsulation, modularity, and inheritance

to data �les, resulting in a cleaner �le abstraction and greatly simplifying the interaction of users with complex

scienti�c and engineering programs.

This paper describes the concepts of the SmartFile system. In section 2 we provide an overview of the system

and its capabilities, and a comparison to related research is provided in Section 3. In section 4 we describe �le types

and the language used to de�ne �le types: DAFT (DAta File Types). Section 5 describes the interaction between

SmartFiles and legacy systems; Section 6 describes the mechanisms for supporting automatic conversions; and

Section 7 introduces the core access routines used to interact with the �les. In section 8, we provide an example

of a SmartFile for unstructured grids, and we provide current status and future directions in section 9.

1



SmartFile

File Descriptor

File Data

Figure 1: Logical view of a SmartFile

2 Overview

The notion of self-describing data implies that a SmartFile must at least contain both raw data and descriptive

data (meta data in database terminology). Therefore, as depicted in Figure 1, a SmartFile consists of two main

sections:

� a �le descriptor, which describes the syntactic and semantic contents of this �le; and

� a �le data section, containing the actual data needed by application programs.

For various reasons related to performance and legacy system support, the physical de�nition of a SmartFile

may or may not resemble this logical view of a SmartFile. However, it is important that from the user's perspective,

both sections of the �le are contained within a single Unix �le, thus allowing the standard Unix commands (cp,

mv, tar, ci, ...) to operate on SmartFiles. To do otherwise would mean providing separate interfaces for all

Unix commands applicable to �les.

Currently, the SmartFile descriptor consists of three components:

1. a �le type, which can be a stand-alone type or a member of a complex hierarchy of �le types;

2. a layout, which provides a detailed syntactic description of the organization of the raw data in relation to

the abstractions (�elds) de�ned by the �le type; and

3. the attributes, which provide �le-speci�c ancillary information (e.g. data, author, etc.) necessary for proper

interpretation of the data �le.

File types de�ne a collection of abstractions or �elds composed from data types, parameters, and attributes.

The data types may be simple (e.g. double) or complex (e.g. struct), and arrays of any data type are supported.

Parameters provide for generalized �le types on the basis of variable-length �elds, by allowing arrays to be de�ned

in terms of an abstract parameter value rather than being restricted to �xed sizes. Attributes provide ancillary

information about a �eld, �le type, or �le. Examples of common attributes include units of measure, date/time

stamps, system of mapping used, etc. A detailed description of �le types is given in Section 4.

The following example illustrates the speci�cation of a �eld called pressure, de�ned as an array of doubles

whose length is based on a parameter named nnodes, and whose units are speci�ed in pounds per square inch:
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sf_root_t sf_conv[] sf_open() ...

Access Functions

SmartFile Core

User Extensions

ConversionsFile Types

Figure 2: SmartFile system organization

field pressure[nnodes]: double <units=psi>;

In addition to providing descriptive information, attributes can be used to automatically drive conversion

and �ltering tools provided by the system or as user routines. From our example, if pressure is desired in

millimeters of Mercury rather than pounds per square inch, then an automated conversion mechanism (<mmHg>

= <psi>*51.7151) can be invoked to make the conversion on-the-
y. Section 6 provides more details on using

attributes to trigger automatic conversions.

2.1 System Organization

The SmartFile system is organized into three extensible components (as depicted in Figure 2): �le types,

conversion tables, and access routines.

Each data �le is an instantiation of a given �le type, similar to the relationship between an object and a class.

The �le types are either provided by the core SmartFile system, provided by a domain-speci�c extension, or

provided by the user. File types can be created stand-alone or from other �le types, using inheritance to create

a �le type hierarchy. Section 4 details �le types and the DAFT language used for creating them.

Conversion tables are used to direct the conversion of data elements from one form to another, or from one data

structure representation to another. For units conversion, automated tables are available [11], and in the case

of data structure conversions the user must provide the routines that are triggered by the attributes. Section 6

describes the details of conversion tables and how conversions are initiated.

The access routines provide the user with a simple interface with which to create and query a SmartFile. The

interface can easily be supported in both C and Fortran, and users are free to extend the interface as needed

by writing higher-level routines in terms of the given, low-level routines. Section 7 details the SmartFile access

routines.
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The extensible design of the SmartFile system allows application areas (such as computational 
uid dynamics)

to provide common �le types, conversion tables, and access routines that can be shared among users of that

community. Additionally, user's can extend the system to further re�ne its operation for their exact needs.

2.2 Capabilities

The current modus operandi for scienti�c programmers is to use the standard I/O routines provided through

either Fortran or C to create data �les with arbitrary representation. The goal of SmartFiles and other related

systems is to elevate the programmer to a higher level of abstraction so that interaction with a �le can be done

at an abstract, conceptual level rather than at a raw, byte level. In the process of designing SmartFiles, we have

identi�ed the following capabilities as being essential towards achieving this goal:

� Interacting with �le data using user-de�ned abstractions (�elds).

� Specifying general �le types that are related to data �les as classes are related to objects.

� Providing the ability for the user to extend all portions of the design, including �le types, conversion/�ltering

capabilities, and access/interface routines.

� Providing consistency checks to ensure that written data conforms to the �le type speci�cation.

� Providing an automatic �ltering mechanismby combining attribute informationwith conversion tables/routines.

� Supporting legacy data �les and programs. Since many scienti�c programmers are using legacy programs or

interoperating with people who are, support for legacy �les and systems is tantamount to interoperability.

SmartFiles conforms to Booch's speci�cation of an object-oriented system [3] by supporting abstraction, en-

capsulation, modularity, and hierarchy. Abstraction and encapsulation are supported by interfacing with the

�le using access routines that are driven by the �le type information. Thus, a software layer is placed between

the user and the data �le, allowing for �ltering, consistency checks, and performance optimizations. Modularity

is supported in the ability to decouple the segments of a SmartFile for support of legacy systems. Hierarchy

(inheritance) is supported by allowing the user to specialize �le types, conversion tables and routines, and access

routines from general abstractions.

3 Related Research

The notion of adding syntactic and semantic descriptions to �les is not new: Pablo [2] utilizes a self-describing

data format for performance trace �les; netCDF [9] provides a self-describing format for multi-dimensional tabular

data (such as sensor data); and HDF [8] is a self-de�ning �le format for transfer of various types of data (n-

dimensional data, raster images) between di�erent machines. These systems all impose a speci�c structure on

the data that can be represented (such as multidimensional tables), in a sense restricting their users to a single

�le type whose �eld names and values may vary. SmartFiles allows for true user-de�ned �le types, where the user

is in complete control over both the structure and content of the data �elds. Thus a representation for a graph
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structure can be done as easily as a multidimensional table. This is crucial for many engineering programs, such

as adaptive mesh re�nement in computational 
uid dynamics, which use data �les to store grid con�gurations.

Additionally, SmartFile data types can be generalized for a wide variety of similar data �les by incorporating

runtime values called parameters into their de�nition. This allows for the same �eld type to occur in di�erent

quantity for di�erent data �les and yet still belong to the same �le type.

There are also a variety of standardized, application-speci�c data formats, including FITS [7] for astronomical

data, GRIB [10] for meteorological data, PDS [6] for space mission data, SDTS [4] for geographical data, and a

variety of graphical data formats, including TIFF, GIF, and JPEG. SmartFiles does not restrict the user to a

speci�c format; rather, the user is allowed to create new formats (�le types) from scratch or from existing �le

types through inheritance.

ELFS [5] describes an object-oriented approach to high-performance �le I/O, in which �les are treated as typed

objects. The �le objects encapsulate the details of obtaining high-performance I/O on a variety of parallel and

distributed machines. While ELFS and SmartFiles both apply OO methodology to �le access, the goals and

implementations are di�erent. ELFS strives for encapsulation to support high-performance I/O in a parallel or

distributed system, whereas SmartFiles strives for creating �les that are self-aware and can perform conversions

and consistency checks. ELFS is implemented as an OO system in Mentat (C++), whereas SmartFiles supports

a simple language to allow the user to specify the �le type, or simply use an existing �le type, and the interface

is supported in both C and Fortran.

On the other side of the capabilities spectrum for self-describing data �les are object-oriented databases.

Although SmartFiles do support some OODBMS features, such as self-describing data and the ability for the

end-user to create hierarchical data abstractions, they do not attempt supporting the more di�cult (and resource

consuming) functions such as concurrency control, automatic recovery, and complex query facilities [1]. By

omitting these capabilities unnecessary for their intended use, we can create a much faster, easier to use, and

compact tool.

Perhaps the single largest problem with many of the existing solutions to improving data �les is the lack of

support for legacy systems. We have provided support for integration of legacy �les and programs into the system

so that data �le interoperability can occur even when legacy systems continue to use raw data formats.

4 File Types

In the object-oriented language C++, a class is used to provide a semantic description for a set of abstractions

that will apply to a new data type. Objects, in C++, are then instantiations of this new data type with a given

set of values for the abstractions. Even though the objects themselves may di�er, it is always the case that two

objects with the same data type, or class, will represent the same physical abstractions.

SmartFiles extends this idea to �les by introducing a mechanism for creating and specifying �le types that

are to be associated with data �les. Similar to data types, �le types provide a semantic description for a set of

abstractions, called �elds, within a �le. A SmartFile is then an instantiation of a given �le type with a particular

set of values for the �elds. However, unlike a C++ class, the arrangement and storage of �elds within a �le

type may di�er from �le to �le of the same type. For example, two data �les representing unstructured grids
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filetype sf_point_t = {

<type=sf_point_t>;

parameter npoints;

x, y : int <units=inches>;

field point[npoints] : {x,y}

<system=cartesian>;

}

*** SF_TYPE (sf_point_t) ***

*** SF_LAYOUT ( 65) ***

5

0 1
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2 3

3 4

4 5

*** SF_FIELD (npoints 37 1) ***

*** SF_FIELD (point 40 5) ***

Figure 3: Sample SmartFile

may both be of the same �le type, but may have a di�erent arrangement of the �elds within the �le type. To

accommodate this 
exibility in representation, a SmartFile descriptor (cf. Figure 1) consists of both a �le type,

which de�nes the �eld abstractions in the �le, and a layout, which de�nes how the �elds for the given �le type

are mapped to the physical storage of a �le. Thus, SmartFile \objects" are instances of general �le types coupled

with a �le-speci�c layout. Note, however, that �le layouts are maintained automatically by the SmartFile access

routines and, except for legacy systems (cf. Section 5), are transparent to the user.

Figure 3 depicts a sample SmartFile with its �le type�, layout, and data. SmartFiles may be physically stored

in binary or ASCII form (in this case ASCII), and the user is given the option when the �le is created.

The de�nition of a �le type, speci�ed using the DAFT speci�cation language, consists of three types of decla-

rations: attributes, parameters, and �elds.

4.1 Attributes

Attributes provide a mechanism for associating ancillary, descriptive information relating to the elements of

a SmartFile, including the �elds, �le types, and �les themselves. Attributes consist of a pair of <name, value>

strings, where the the value of the string is open for interpretation by the user. Most commonly, actual string

values are used, such as <units=cm>, though numeric values are possible as well using the standard C routines

sprintf and atof/atoi.

In addition to providing the user with general information about the �le and its �elds, attributes can be used as

a triggering mechanism for implicit �ltering of the data as its being read or written (cf. Section 6). For example,

�For illustration purposes, we have included the actual DAFT description for the sf point t �le type, when in reality only the

�le type name would actually appear in the SmartFile descriptor.
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using the udunits [11] library, attributes specifying units of physical measure can automatically and e�ciently

be converted as the data is being read or written. Although �le attributes are not new, comments are a kind of

unstructured attribute that have been the norm for scienti�c data �les, using them as a triggering mechanism for

implicit conversions is a useful and novel approach for scienti�c data �les.

4.2 Parameters

Parameters provide a method for generalizing �le types by providing a mechanism for specifying symbolic size

and shape relationships for �elds. Depending on when the symbolic parameter is bound to a value, called binding

time, the e�ect can range from a static �eld size to a dynamic �eld size. This makes it possible, for example, to use

the same �le type given in Figure 3 for a �le with 5 points as well as for a �le with 5000 points, since the number

of points is speci�ed as a parameter. However, even though the �les contain a di�erent amount of information,

they can both be considered to be of the same type and therefore the same abstractions are available to the user,

in this case points. Since parameters are always used to indicate size, they must be a positive integral type, or

in the case of our implementation, unsigned ints.

The binding time for parameters can potentially occur at any point from the speci�cation of a �le type to its

use, but we have identi�ed three times that seem to be the most useful:

1. static, where the parameter is bound to a static value in the �le type description;

2. early, where the parameter is bound by the user (using a sf bind call) before accessing any �eld based on

that parameter; or

3. late, where the parameter is bound by the SmartFile system at �le closing based on the number of items

that were written for the �elds based on that parameter.

While late binding provides 
exibility and ease-of-use for a user, static and early binding provide the opportu-

nity to provide coherence checks on the values used to create a �eld, ensuring that the number of elements \put"

into a �eld match the pre-speci�ed parameter value for that �eld. For late binding, the only coherence check

possible is symbolic, such as that two �elds based on the same parameter have the same number of elements each.

Using parameters to obtain 
exible �le types and to provide automated coherency checks is another novel feature

of SmartFiles.

4.3 Fields

Fields provide the mechanism that allows the user to de�ne data abstractions that will be used for interacting

with the �le data, constituting the heart of the �le type. Speci�cally, �elds provide persistent, user-de�ned data

structures, and in this way SmartFiles are similar to OODBMS. Fields may be de�ned as simple data types (eg.,

int, float, double, ...), or arbitrary structures recursively constructed from simple types.

For example, the point �eld de�ned in Figure 3 is a complex structure consisting of two integer sub�elds, x

and y. A �eld is classi�ed as a sub�eld if it is used to construct a larger �eld and lacks the \�eld" keyword,
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filetype sf_point_t = {

parameter npoints;

x, y : int;

field Point[npoints] : {x,y}

<system=Cartesian>;

field Length[npoints] : double

<units=meters>;

}

filetype sf_my_point_t : sf_point_t = {

field Line[npoints] : int;

field Length[npoints] : double

<units=feet>;

}

Figure 4: Example of �le type derivation

meaning that it cannot be used as a data abstraction for the get/put primitives.

As an example of how �elds are used to access data elements within a �le, consider again the point �eld from

Figure 3. A point element can be retrieved from the �le using the sf get primitive:

err = sf_get (sf, "point", &point_arr,

&count, "system=Cartesian");

as opposed to the standard method:

for (i=0; i<count; ++i) {

fscanf (fd, "%i%i",

&point_arr[i].x,

&point_arr[i].y);

}

4.4 Derived File Types

One of the most powerful features of any object-oriented system is hierarchy (inheritance): the ability to build

new objects from existing objects. SmartFiles provides for �le type hierarchies by allowing the user to derive new

�le types from existing �le types. Under derivation, the abstractions de�ned in the base �le type are available in

the derived �le type for extension or modi�cation. All declarations in the base �le type are present in the derived

�le type, unless rede�ned, and additional declarations may be made in the derived �le type.

For example, in Figure 4 the �le type sf my point t is derived from the �le type sf point t, where a new

�eld, Line, is de�ned and the attribute value for an existing �eld, Length, is modi�ed.
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The inheritance mechanism for SmartFile �le types forms an \is-a" relationship hierarchy, and any �le can

be opened using the type with which it was created or using any base type from which the actual �le type was

derived. This provides the ability for two scientists to interpret the same data �le in di�erent ways, which is

necessary for supporting interoperability.

4.5 The DAFT Language

The DAFT (DAta File Type) language is used to declare the �elds, parameters, and attributes that comprise

a SmartFile �le type. The syntax, shown in Figure 5, was chosen to be both simple and powerful, allowing

attributes to be associated with sub�elds, �elds, and �le types. Parameters must be declared before their use,

since a one-pass compiler will be used to parse the language, and the field keyword is applied to any data item

which is to be visible to the user via the SmartFile access routines. Speci�cation of the syntax in Figure 5 uses

[item] to indicate an optional item and f item ...g to indicate zero or more occurrences of item.

The DAFT compiler takes the �le type declarations and produces an enhanced symbol table that is used by the

SmartFile access routines. The point at which the compilation takes place is still under investigation. Currently,

a �le type is associated with a SmartFile when the �le is opened, and is speci�ed in the form of a string that refers

to a �le containing the DAFT syntax. A search path similar to the Unix BINPATH is used to locate the DAFT

�le description. Once found, the speci�cation is compiled (interpreted) and the results added to the global �le

type symbol table. We are also investigating the approach of pre-compiling the DAFT syntax and storing binary

representations of symbol table entries that can quickly be added to the global table upon opening a SmartFile.

5 Legacy Systems

A shortfall of many existing systems for supporting improved access to data �les is their inability to e�ectively

integrate legacy data �les and programs with the system. While creating a new data system out of whole cloth is

attractive, this \all-or-nothing" approach would clearly hinder users who want to utilize the new features, yet still

maintain compatibility with legacy programs and existing data �les, or to interact with others in the community

who are not using the new system.

In consequence, the SmartFile system was designed to allow interoperability with legacy users and systems.

This is done by providing an easy and automated way of creating a SmartFile from a legacy �le and vice versa.

To create a SmartFile from a legacy �le, the user must provide three things: the legacy data �le, a �le type

descriptor that contains the SmartFile abstractions, and a layout descriptor that maps the given abstractions to

physical locations in the data �le. These three elements are then passed to a special routine, sf pack, which

parses the �le type and layout descriptors and creates a correctly-formatted SmartFile.

The layout descriptor is simply a series of declarations of the form <fieldname:count>, where the order of

the declarations speci�es the corresponding order for the data �le. For example, consider the data for a plotting

program that consists of some number of two-dimensional coordinate pairs preceded by the number of points in

the �le (as depicted in Figure 6). A possible �le type descriptor might be:

filetype sf_point_t = {
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�letype-desc ! filetype id [ `:' id ] `=' `f' spec-part `g'

spec-part ! spec-item `;' f spec-item `;' ... g

spec-item ! param-decl

j attr-list

j struct-decl

j �eld-decl

j sub�eld-decl

param-decl ! parameter param-item f `,' param-item ...g

param-item ! param-id [ `=' integer-const ]

attr-list ! `<' attr-item f `,' attr-item ...g `>'

attr-item ! attr-id `=' attr-value

struct-decl ! struct struct-id struct-def attr-list

struct-def ! `f' struct-item f `;' struct-item ...g `g'

struct-item ! sub�eld-id

j sub�eld-decl

�eld-decl ! field sub�eld-decl

sub�eld-decl ! sub�eld-item f `,' sub�eld-item ...g `:' type attr-list

sub�eld-item ! sub�eld-id f `[' bounds-list `]' g

bounds-list ! bounds-item f `,' bounds-item ...g

bounds-item ! param-id

j integer-const

type ! scalar-type

j struct-def

scalar-type ! int

j float

j double

Figure 5: DAFT Syntax
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Figure 6: Sample legacy �le for plotting program
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parameter npoints;

x,y: int;

field point[npoints]: {x,y};

}

and the corresponding layout descriptor would then be:

npoints:1

point:npoints

The resulting SmartFile would then resemble the �le in Figure 3. Note that the layout descriptor can also make

use of the speci�ed parameters, so that the same layout descriptor can be re-used when a new legacy data �le

needs to be re-packed. This is an important consideration because it allows the �le type and layout descriptors

to remain unchanged and still accommodate new versions (updated datasets) of the legacy data �le.

To extract the legacy portion of a SmartFile, the sf unpack routine is used to simply strip away the layout

and �le type information.

By providing a clean and un-cumbersome method for interoperating with legacy systems, SmartFiles o�ers

scienti�c programmers the unique opportunity to gradually convert programs from standard language I/O prim-

itives to SmartFile primitives while still remaining compatible with older datasets. Moreover, the user who has

completely made the transition to the SmartFiles paradigm can still e�ectively cooperate with colleagues who

continue to use raw data �les. This is an important consideration that is often overlooked by many software

system designers.

6 Data Conversion

One of the most common programming operations that scienti�c programmers undertake is writing �lters to

convert the output data from one program into a suitable format as input data for another program. Large

scienti�c applications are often written as a collection of programs forming a \pipeline," with such �lters at each

step of the pipeline, and changes in one program can cause a ripple in the pipeline that necessitates changes in

all of the subsequent �ltering programs.

SmartFiles attempts to remedy this situation by �rstly de-coupling the dependence that a program has on

physical �le formats, using data abstractions instead of actual I/O statements. Secondly, they provide a triggering

mechanism (via the attributes) to apply implicit �ltering techniques when data abstractions are being read or

written. Since SmartFile data is not just passive ASCII data, but has attached \semantic content" via the �le type

and the attributes of the �le, the system can perform whatever supported data conversions are requested during

insertion or extraction of information. For example, if a �le contains a �eld of distances in meters, but one prefers

distances in feet, the sf get command can perform this conversion by specifying the attribute <units=feet>.

The SmartFile library notes the di�erence between the requested attribute and the stored attribute, and consults

the conversion tables for a meters to feet equation, �nding <feet> = <meters>*3.28084.

Units conversion is but one example of the kinds of conversions frequently needed with scienti�c data. The set

of conversions envisioned for support include:
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canonical units:

cm % length

kg % mass

newton % force

conversion factors:

1 inch = 2.54 cm % length

1 foot = 12 inch % length

1 barleycorn = 0.3333 inch % length

1 furlong = 660 foot % length

1 kg = 1000 gram % mass

1 dyne = 1 gm cm / sec^2 % force

1 erg = 1 gm cm^2 / sec^2 % energy

Figure 7: Sample conversion table

1. Change of physical units (e.g. furlong to barleycorny).

2. Change of coordinate systems (e.g. polar to cartesian).

3. Conversion between di�erent sets of physical quantities (e.g. momentum and density to velocity and

pressure).

4. Change of data structure representation (e.g. cell-centered nodes to vertex-centered nodes).

5. Interpolations and smoothing operations.

The �rst three of these conversions can be done with conversion tables, such as the one depicted in Figure 7. At

runtime, when a conversion is needed, these tables are consulted to determine if there exists an appropriate path

from the known value to the desired value. External conversions systems, such as Unidata's udunits package [11],

can also be consulted. The set of equations de�ned by the conversion path is then applied to each data element

as it is being streamed into or out of the system.

Table-driven interpretation has several advantages. For one, it is easy to inherit and specialize tables for

extending the system to new disciplines. For example, an astronomer may need units like solar-masses, and

parsecs, in addition to the units in the default tables, and these new units can easily be added. Also, table-driven

interpretation is quite powerful. As a trivial example, compound units like newton-cm2
=sec

2 create no problem

| as long as the system understands newton, cm, and sec separately, it can treat the whole as an algebraic

composite of these simpler units. Similarly, given equations relating density, energy, velocity, pressure, and

so on, the system can derive new equations to provide conversions not explicitly provided.

The last two conversions listed, change of data structures and the various smoothing and interpolation op-

erations, require the user to provide additional code to perform the conversions. There is, for example, no

automated method for converting from cell-centered nodes to vertex-centered nodes. However, while the user

is required to provide such code, the system provides the triggering mechanism to automatically invoke these

conversions depending on the way in which user's want the data to be retrieved/stored.

yA barleycorn is 1

3
inch, as the astute reader must surely know.
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7 Access Routines

The access routines provided by the SmartFile core library support opening and closing a �le, getting and

putting �elds from a �le, and inquiring and setting attributes. The routines support both C and Fortran interfaces,

and we envision also supporting this interface from a C++ class. For simplicity, we detail the interface routines

using the C interface.

int sf_open (const char *fileName,

const char *fileType,

sf_openmode_t openMode,

sf_filemode_t fileMode,

sf_file **smartFile);

� The sf open routine attempts to open a SmartFile either for creation or as an existing �le. The fileType

is used to locate the corresponding descriptor �le, \�leType.sfd," located in the �le type directory path.

The �letype descriptor contains the DAFT code that declares the available abstractions. The declarations

are parsed and loaded into a symbol table associated with the active SmartFile descriptor de�ning this �le.

Additionally, the �elds are \
attened" for optimal reading/writing. The openMode speci�es whether the

�le should be written (create) or read, and the �leMode determine whether the �le is ASCII or binary.

int sf_close (sf_file *smartFile);

� The sf close routine closes a SmartFile and performs the integrity checks. There are two types of integrity

checks: completeness and coherence. The �rst, completeness, determines if all �elds exist in the �le as

speci�ed by the �le type. This check is important when the �le will be used later, by another program that

will expect certain information to exist. The second check, coherence, determines whether parameter-based

�elds have the appropriate number of elements based on their parameter values. All unbound parameters

are also bound at closing time.

int sf_get (sf_file *smartFile,

const char *fieldName,

void *getLocation,

char *desiredAttr,

int *getCount);

� The sf get routine retrieves the data stored in a given �eld of a SmartFile. The address where the data

is to be stored is given by getLocation, and getCount is used to return the number of items read. To

avoid problems with ordering of matrices, all �eld names must return either a scalar value or an array of

values, such that they will be stored contiguously starting from getLocation. If getCount is speci�ed as

input, then only that many items will be read. If getCount is zero on input, then the entire �eld will be

read. Successive reads from the same �eld will keep track of their place, so that the user can incrementally

access the �eld data. This ability is needed to check for read-termination conditions that are based on the

data being read { a common technique for scienti�c programming. The desiredAttr argument can be used
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to specify how the user expects the data to arrive, and is compared against the actual attributes for the

speci�ed �eld in the �le type. If there is a mismatch, then the system searches for a conversion path in the

conversion tables. If found, the appropriate conversions are made as the data is being read, otherwise an

error is reported.

int sf_put (sf_file *smartFile,

const char *fieldName,

void *putLocation,

char *desiredAttr,

int *putCount);

� The sf put routine writes the data that is stored starting at putLocation into the �eld speci�ed by

fieldName. As with sf get, successive puts to the same �eld will keep track of their place, and putCount is

used to specify how many �eld values are to be written. The desiredAttr argument can be used to specify

information about the data to be placed into the speci�ed �eld so that the system can apply conversions as

necessary.

int sf_bind (sf_file *smartFile,

const char *parameterName,

unsigned int value);

� The sf bind routine allows the user to bind a value to a parameter that is not statically-bound by the

�le type, so that consistency checks performed when the �le is closed can be more accurate. Of the three

binding times mentioned in Section 4.2, sf bind performs early binding.

int sf_pack (const char *fileType,

const char *rawDataFile,

const char *layoutDescFile,

const char *smartFile);

� The sf pack routine creates a SmartFile from a raw data �le, �le type, and layout descriptor as explained

in Section 5.

int sf_unpack (const char *smartFile,

const char *rawDataFile);

� The sf unpack routine creates a raw data �le from a SmartFile by simply stripping away the SmartFile

components of the �le.

int sf_inqattr (sf_file *smartFile,

const char *fieldName,

const char *attrName,

const char **attrValue);
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filetype Unstructured = {

<type=Unstructured>

parameter nnodes, nedges, ncells,

nsedges, nvedges, nfedges;

node1, node2, cell1, cell2 : int;

field edgelist[nedges] :

{node1, node2, cell1, cell2};

field slist[nsedges] : int;

field vlist[nvedges] : int;

field flist[nfedges] : int;

x,y : double;

field coords[nnodes] : {x,y}

<system=cartesian>;

}

Figure 8: Example of unstructured grid �le type

� The sf inqattr routine retrieves the attribute information for a given �eld or �le (if �eld is NULL). The

name of the attribute is speci�ed, and a pointer to a string containing the value of the attribute is returned.

int sf_addattr (sf_file *smartFile,

const char *fieldName,

const char *attrName,

const char *attrValue);

� The sf addattr routine allows the user to assign the given value to the attribute speci�ed for the �eld or

�le (if �eld is NULL).

8 Example

In this section, we give a brief example of a SmartFile and its use. Figure 8 depicts the �le type descriptor for

an \unstructured grid" �le type, useful in computational 
uid dynamics. The �elds in this �le type include: an

edgelist, describing the mesh topology (essentially a planar graph), a coords list giving the location of the mesh

points, and lists describing edges on solid, viscous, and far-�eld boundaries. Parameters control the number of

nodes, number of edges, number of cells, and number of edges for solid, viscous, and far-�eld boundaries. This is

a simple, yet realistic, example of the data required to represent an unstructured grid.

Figure 9 depicts a program fragment which produces an ASCII �le of type unstruct t, and Figure 10 gives a

analogous fragment for reading such a �le. This example illustrates a few of the simplest SmartFile capabilities.

First, �elds can be read and written in di�erent order, since the programmer is only concerned with the �eld

abstractions, not their actual layout in the data �le. Second, one of the �elds is read repeatedly, while another is

never read. There is complete freedom on reading; writing is more constrained. Every �eld speci�ed by the �le

type must be written or the sf close statement (in Figure 9) would fail on an incomplete type error.
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main(){

sf_file *ugrid_file;

struct edge{

int node1, node2, cell1, cell2;

} edges[EDGE_NO];

struct coord{

double x, y;

} coords[NODE_NO];

err = sf_open("unstruct.dat", "Unstructured", SF_WRITE, SF_ASCII, &ugrid_file);

...

err = sf_bind(ugrid_file, "nnodes", nnodes);

err = sf_bind(ugrid_file, "nedges", nedges);

...

err = sf_put(ugrid_file, "coords", coords, NODE_NO, NULL);

err = sf_put(ugrid_file, "edgelist", edges, EDGE_NO, NULL);

...

err = sf_close(ugrid_file);

}

Figure 9: Program fragment writing unstructured grid data

main(){

sf_file *ugrid_file;

int nnodes;

struct edge{

int node1, node2, cell1, cell2;

} edges[EDGE_NO];

struct coord{

double x, y;

} coords[NODE_NO];

err = sf_open("ugrid_data", "Unstructured", SF_READ, SF_ASCII, &ugrid_file);

...

err = sf_get(ugrid_file, "edgelist", edges, &nedges, NULL);

err = sf_get(ugrid_file, "coords", coords, &nnodes, NULL);

...

err = sf_close(ugrid_file);

}

Figure 10: Program fragment reading unstructured grid data
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9 Status and Conclusions

The goal of SmartFiles is to elevate the programmer to a higher level of abstraction, so that interaction with

data �les can be done at an abstract, conceptual level rather than at the level of integers and floats. In

addition to the bene�ts of abstraction, it is also possible to do units conversion or other kinds of intelligent

processing.

The SmartFile system is actively being developed at by a collaboration of computational scientists and computer

scientists at the University of Wyoming and ICASE. Prototype software for the interface is available, and the

DAFT compiler is currently being completed. We are also working on the integration of the udunits package that

will allow for automatic units conversion based on the \units" attribute, and several unstructured CFD codes

and their associated data �les are begin converted to use the system. The support for legacy systems allows the

old version of the programs to continue operating with the newer SmartFiles version.

Future plans for the system include developing additional conversion tables, interfacing with existing software

systems for data �les (such as netCDF), and automatic generation of layout descriptors for legacy systems. We

are also planning to construct an MDO application for aircraft design using SmartFiles as the coupling devices

between the codes. Finally, though performance has not been a major issue, we are looking at optimization

techniques to improve the I/O system performance. For example, one idea is to 
atten the �elds with sub�elds

so that the entire �eld (or multiple �elds) can be read in a single operation.

In summary, we have designed and are currently implementing a system for applying object-oriented principles

to data �les. The goal of our work is to provide a solid, sensible approach to data �le interoperability for scienti�c

and engineering codes.
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